899 research outputs found

    Modification of Nanodiamonds by Xenon Implantation: A Molecular Dynamics Study

    Get PDF
    Xenon implantation into nanodiamonds is studied using molecular dynamics. The nanodiamonds range in size from 2-10 nm and the primary knock-on (PKA) energy extends up to 40 keV. For small nanodiamonds an energy-window effect occurs in which PKA energies of around 6 keV destroy the nanodiamond, while in larger nanodiamonds the radiation cascade is increasingly similar to those in bulk material. Destruction of the small nanodiamonds occurs due to thermal annealing associated with the small size of the particles and the absence of a heat-loss path. Simulations are also performed for a range of impact parameters, and for a series of double-nanodiamond systems in which a heat-loss path is present. The latter show that the thermal shock caused by the impact occurs on the timescale of a few picoseconds. These findings are relevant to ion-beam modification of nanoparticles by noble gases as well as meteoritic studies where implantation is proposed as the mechanism for xenon incorporation in pre-solar nanodiamonds

    Microwave Properties of Ba(0.6)K(0.4)BiO(3) Crystals

    Full text link
    We report on field-induced variations of the microwave surface resistance at 9.6 GHz of Ba(0.6)K(0.4)BiO(3) crystals. Energy losses have been investigated as a function of the static magnetic field in the range of temperatures 4.2 K - Tc. By analyzing the experimental results in the framework of the Coffey and Clem model we determine the temperature dependence of the first-penetration field, upper critical field and depinning frequency. The results show that the pinning energy of this bismuthate superconductor is weaker than those of cuprates.Comment: 6 pages, 8 embedded figure

    Exploring matrix effects on photochemistry of organic aerosols

    Get PDF
    This work explores the effect of the environment on the rate of photolysis of 2,4-dinitrophenol (24-DNP), an important environmental toxin. In stark contrast to the slow photolysis of 24-DNP in an aqueous solution, the photolysis rate is increased by more than an order of magnitude for 24-DNP dissolved in 1-octanol or embedded in secondary organic material (SOM) produced by ozonolysis of α-pinene. Lowering the temperature decreased the photolysis rate of 24-DNP in SOM much more significantly than that of 24-DNP in octanol, with effective activation energies of 53 kJ/mol and 12 kJ/mol, respectively. We discuss the possibility that the increasing viscosity of the SOM matrix constrains the molecular motion, thereby suppressing the hydrogen atom transfer reaction to the photo-excited 24-DNP. This is, to our knowledge, the first report of a significant effect of the matrix, and possibly viscosity, on the rate of an atmospheric photochemical reaction within SOM. It suggests that rates of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus altitude. The results further suggest that photochemistry in SOM may play a key role in transformations of atmospheric organics. For example, 24-DNP and other nitro-aromatic compounds should readily photodegrade in organic particulate matter, which has important consequences for predicting their environmental fates and impacts

    Measurements of the absolute value of the penetration depth in high-Tc T_c superconductors using a tunnel diode resonator

    Full text link
    A method is presented to measure the absolute value of the London penetration depth, λ\lambda, from the frequency shift of a resonator. The technique involves coating a high-TcT_c superconductor (HTSC) with film of low - Tc material of known thickness and penetration depth. The method is applied to measure London penetration depth in YBa2Cu3O{7-\delta} (YBCO) Bi2Sr2CaCu2O{8+\delta} (BSCCO) and Pr{1.85}Ce{0.15}CuO{4-\delta}(PCCO).ForYBCOandBSCCO,thevaluesof (PCCO). For YBCO and BSCCO, the values of \lambda (0)areinagreementwiththeliteraturevalues.ForPCCO are in agreement with the literature values. For PCCO \lambda \approx 2790$ \AA, reported for the first time.Comment: RevTex 4 (beta 4). 4 pages, 4 EPS figures. Submitted to Appl. Phys. Let

    Sputtering yields exceeding 1000 by 80keV Xe irradiation of Au nanorods

    Get PDF
    Using experiments and computer simulations, we find that 80 keV Xe ion irradiation of Au nanorods can produce sputtering yields exceeding 1000, which to our knowledge are the highest yields reported for sputtering by single ions in the nuclear collision regime. This value is enhanced by more than an order of magnitude compared to the same irradiation of flat Au surfaces. Using MD simulations, we show that the very high yield can be understood as a combination of enhanced yields due to low incoming angles at the sides of the nanowire, as well as the high surface-to-volume ratio causing enhanced explosive sputtering from heat spikes. We also find, both in experiments and simulations, that channeling has a strong effect on the sputtering yield: if the incoming beam happens to be aligned with a crystal axis of the nanorod, the yield can decrease to about 100

    Muon spin rotation study of the magnetic penetration depth in the intercalated graphite superconductor CaC6

    Full text link
    We report temperature- and magnetic field-dependent bulk muon spin rotation measurements in a c-axis oriented superconductor CaC6 in the mixed state. Using both a simple second moment analysis and the more precise analytical Ginzburg-Landau model, we obtained a field independent in-plane magnetic penetration depth {\lambda}ab (0) = 72(3) nm. The temperature dependencies of the normalized muon spin relaxation rate and of the normalized superfluid density result to be identical, and both are well represented by the clean limit BCS model with 2\Delta/kB Tc = 3.6(1), suggesting that CaC6 is a fully gapped BCS superconductor in the clean limit regime.Comment: Accepted for publication in PR

    Effect of He-appm/DPA ratio on the damage microstructure of tungsten

    Get PDF
    In-situ ion irradiation and transmission electron microscopy has been used to examine the effects of the He appm to DPA ratio, temperature and dose on the damage structure of tungsten (W). Irradiations were performed with 15 or 60 keV He+ ions, achieving He-appm/displacements per atom (DPA) ratios of ~40,000 and ~2000, respectively, at temperatures between 500 and 1000°C to a dose of ~3 DPA. A high number of small dislocation loops with sizes around 5–20 nm and a He bubble lattice were observed for both He-appm/DPA ratios at 500°C with a bubble size ~1.5 nm. Using the g.b=0 criterion the loops were characterised as b = ±1/2 type. At 750°C bubbles do not form an ordered array and are larger in size compared to the irradiations at 500°C, with a diameter of ~3 nm. Fewer dislocation loops were observed at this temperature and were also characterised to be b = ±1/2 type. At 1000°C, no dislocation loops were observed and bubbles grew as a function of fluence attributed to vacancy mobility being higher and vacancy clusters becoming mobile
    • …
    corecore